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ABSTRACT

The behavior of inverse-power spherical harmonic
expansions is presented when the origin of the coordinate
system undergoes a translation. A seeming paradox, in-

volving large translations is discussed.



THE TRANSFORMATION OF EXTERNAL
HARMONIC SERIES UNDER A TRANSLATION
OF ORIGIN*

Stephen J. Madden, Jr.

1. Introduction

The object of this report is to present an elementary
derivation of the behavior of external spherical harmonics
of the form

Pi(cos e)elm¢

n+1
r

(1)

when the origin of the coordinate system defining the spheri-
cal coordinates r,0,¢ undergoes a general translation. The
corresponding problem for spherical harmonics of positive
degree has been solved by Aardoom [1l], as has the rotational
problem, where the spherical coordinate system undergoes
a rotation. The rotational problem had been previously solved
by many authors and a most complete presentation is found
in Courant and Hilbert [2].

The spherical harmonics of the form (1) are of par-
ticular interest in the fields of satellite theory and
geodesy which are concerned with the gravitational potential

external to the body which generates it. A common potential

* This report has been presented at the American Geophysical
Meeting, Washington, D.C., April, 1971.



representation in these fields is
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where p and a are the gravitational constant for the generating
body and a characteristic radius for the body, respectively.
The quantities r,06,¢ are'the spherical coordinates of the

field point in a reference system. The angle 0 is the co-
latitude and ¢ is the east longitude. The constants Cnm
and Snm characterize the gravitational field of the bcdy and
its deviation from a point source field.

The result of this report allows the series (2),
usually expressed in a coordinate system located at the
center of mass of the generating body, to be recast into
a form which is valid in a coordinate system whose origin
may be more conveniently located. An example of this
procedure is given by Lee [6] where the translations des-
cribed are used to compﬁte the gravitational force between
two bodies where neither body can -be considered as a point
mass.

It is conceivable that the lunar potential can be ex-
pressed in a coordinate system located at the center of
mass of the earth and thus facilitate, in some cases, the
earth satellite problem. '

The method to be described is a direct generalization of
one due to Hobson [4], who has considered the special case of

translations along the z-axis.

2. The Harmonic Representation

It is possible to put the potential expression (2)



into a form in which terms such as (1) appear. To.do this

‘we introduce complex coefficients

and (2) becomes

w on
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where

P?(cos G)elm¢
Vnm(r’e’¢) = rn+1 :

(5)

This form of the series eliminates separate consideration
of the sin m¢ and cos m¢ cases.
A simple examination of the functions vnm’ especially

when one considers that

with Pn(x) the Legendre polynomial, shows that any direct
approach to the translation problem with a substitution of
translated guantities for r, 6, and ¢ leads to an extremely
complex expression. It is therefore desirable to find

an alternate representation for Vnm(r,6,¢) which allows
translations to be applied. Such a representation, due to

Maxwell, can be found in Hobson [4] or Cunningham [37.



If the notation of Cunningham is modified to agree with
(6),
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with the x,y,z derivatives taken in the reference coordinate
system, where r is the position vector of the field point

in this system. It will be shown in the following para-
graphs that this representation for the spherical har-
monics is useful for the translation problem and leads to

tractable expressions.

3. Description of the Translation .

In addition to the spherical harmonic representation,
we must specify the translation of the coordinate system.
This will be used to transform the scalar |r| and the deri-

vatives in (7). The translation is described in Figure 1,

NEW SYSTEM

OLD SYSTEM

Figure 1. Description of the Translation



The vector § gives the position of the origin of the old
system with respect to the new. A typical field point, P,
is described by‘the vectors r and R in the old and new sys-
tems respectively. 1In what follows we will associate the
spherical coordinates in the new system, R, 68';, ¢' with
R and §,0,¢ with § where 6 and 8' are colatitudes.

At this point, all the necessary notation has been
introduced with the exception of the positive degree

spherical harmonic corresponding to (5)

_k_ 2 im®
Hk% = r Pk(cos 8)e . (8)
This will be of use later.
4. The Transformation Process

In order to use only quantities which are defined with

respect to the new system, we first examine the quantity
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If ¢y is the angle between R and §, then according to the

generating function for Legendre polynomials,
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If we use the addition theorem for spherical harmonics,

Jackson [5], and some elementary manipulations, then
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where P _(8) = P _(cos 6), for the sake of brevity. This depends

also on the definition of the associated Legendre polynomials
for negative order, MacRobert [7],

-m, _ (n~m)‘

If the definitions (5) and (8) are used, we find the result.
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HE (R)V, (8) 6> R .

The asterisk superscript denotes the complex conjugate.

It is at this point that the convenience of the represen-
tation (7) becomes more apparent. With the result given in
(9), the term 1/]x| in (7) has been dealt with. All that re-
mains is the transformation of derivatives. From the defini-

tion of the transformation,



r=R-58. (10)

and since the coordinate axes remain parallel, it is a simple
process to transform derivatives from those with respect
to the old coordinates, x,y,z to those with respect to the
new quantities, components of R or §.

Consider first the case where R > §. Symbolically,
from (10),
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and if we look at (7) the derivatives of interest are

where the derivatives with respect to capital letters refer
to derivatives with respect to components of R. We can thus

use this result, and the first part of equation (9), to find
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The derivatives acting on V__(R)' can be simplified with the
additional use of (7), and finally
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This result holds for R > §.



Similarly, if R < §, we find from (10) that
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If an analogous procedure is followed, we find
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This holds if R < §.

5. Discussion

If the expressions (11l) and (12) are examined, then we
see that the character of an inverse harmonic series such as
(2) may change if the translation distance is large enough.
The series may change from one in inverse powers to one
in positive powers. However, as was pointed out by Lee
(private communication), this is a seeming paradox. If we
take a single large (R < §) translation, then the series
changes from one in negative powers to one in positive powers.
But if we consider a finite sequence of small translations,
each of which keeps R > §, we may obtain an expansion with
the same origin but with an inverse power expansion. The
explanation for this can be found in Figure 2. There are
in certain circumstances, two series which are meaningful,
and a choice must be made between them depending on the
circumstances under consideration. In part A of Figure 2
we see the usual situation where a spherical harmonic ex-
pansion converges outside the smallest sphere, centered at
the center of mass, containing a planet. In part B, we
see the case where the origin has been shifted through a
distance which is smaller than the radius of the sphere of

convergence. In this case there is still only one series,
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which is applicable. If, however, the origin is shifted
through a distance which is greater than the radius of the
original sphere of convergence, there are two applicable series.
One series converges outside the smallest sphere centered

at the new origin which contains the planet and the other
converges inside the sphere about the new origin which is
tangent to the original sphere of convergence. Whether

this second series converges down to the surface of the

planet seems to be an open guestion at the moment in spite

of a discussion due to Moritz [8].

The analytical expressions, (11) and (12), can be
substituted into the series (2) and the summations inter-
changed so that a new spherical harmonic expansion, referred
to a new origin, is obtained. This interchange of summations
is, however, valid only in those regions where convergence
of the original series is guaranteed. In any practical
case, the numerical behavior of the summations involving
the original coefficients should be investigated to
insure that measurement errors are not magnified to the

point where the results are insignificant.
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